Toto je druhá část článku shrnujícího aktuální stav v oblasti provozu jaderných reaktorů III. generace. První část je k dispozici zde.

Reaktor III. generace APR-1400

Reaktor APR-1400 byl druhý typ reaktoru III. generace, který se dostal do provozu. Jedná se o blok Sin Kori (Shin Kori) 3 v Jižní Koreji. Řetězová reakce se u něj rozběhla v prosinci 2015 a komerční provoz zahájil v prosinci 2016. Blok Sin Kori 4 by se měl dostat do provozu v tomto roce. V letech 2018 a 2019 by měly být dokončeny také dva tyto reaktory v elektrárně Sin Hanul (Shin Hanul). Zahájena byla ještě stavba bloků Sin Kori 5 a 6.

Čtyři tyto bloky se budují ve Spojených arabských emirátech v elektrárně Barakah . První blok byl dokončen v březnu 2018 a posunul se do fáze testů, v dubnu 2018 se dokončila kopule kontejnmentu čtvrtého bloku. Spuštění prvního bloku se očekává na přelomu let 2019 a 2020. Důvodem zpoždění je získání dostatečného času na přípravu všech potřebných dozorových i provozních struktur v zemi, která s jadernou energetikou začíná. Jde například o dostatečný čas pro výcvik operátorů reaktorů. Důraz při zprovozňování reaktorů bude kladen hlavně na bezpečnost a kvalitu.

Připravovaná vylepšená varianta tohoto bloku, která by splňovala kritéria III+ generace, se označuje jako APR+ a zatím se nerealizuje. Hlavním problémem reaktorů APR1400 a APR+ se může stát, že Jižní Korea vyhlásila postupný odchod od jádra a moratorium na zahajování nových staveb. Je však otázkou, jestli se toto rozhodnutí nezmění při střetu s realitou státu, který fosilní paliva dováží a možnosti pro využití obnovitelných zdrojů má omezené. Mýcení lesů kvůli stavbě velkých fotovoltaických elektráren není příliš ekologický přístup (viz například zde). Je tak možné, že se nastoupený směr v budoucnu změní. Zvláště, když dochází k posunu veřejného mínění v této otázce. Už teď však významně zhoršuje postavení firmy KEPCO v mezinárodních soutěžích na stavbu jaderných bloků. Nyní například v tom, který probíhá v Saudské Arábii.

Elektrárna Jang-ťiang, jejíž poslední bloky jsou typu ACPR-1000 (zdroj CGN).
Elektrárna Jang-ťiang, jejíž poslední bloky jsou typu ACPR-1000 (zdroj CGN).

Reaktor III. generace ACPR-1000

ACPR-1000 je varianta čínského reaktoru CPR-1000, která splňuje požadavky na reaktory III. generace. První dva bloky tohoto typu se začaly budovat v roce 2013 jako 5. a 6. blok v čínské elektrárně Jang-ťiang. První z nich začal dodávat elektřinu 23. května 2018. Doba budování je cca 5 let, což je hodnota, která se od těchto reaktorů očekává. Druhý blok by měl být dokončen v roce 2019. Další dva se začaly budovat jako Chung-jen-che 5 a 6 (Hongyanhe) v roce 2015 a jejich dokončení se čeká v letech 2019 až 2020. Poslední dva pak jsou Tchien-wan 5 a 6, jejichž konstrukce začala v letech 2015 a 2016, dokončení se očekává v letech 2020 a 2021. U tohoto reaktoru Čína ukázala, že je schopna vybudovat reaktor III. generace za pět let. Od něho pak přešla k modelu Hualong One, který splňuje nároky III+ generace.

Reaktor III+ generace Hualong One (HPR1000)

Jde o reaktor, který vyprojektovala Čína jako klíčový pro vlastní potřeby i pro nabídku zahraničním zájemcům. Referenční bloky se staví v elektrárně Fu-čching jako bloky 5 a 6. Zde se koncem ledna 2018 instalovala u bloku 5 tlaková nádoba reaktoru, která byla vyprojektována v Číně a vyrobena firmou China First Heavy Machinery. O něco dříve ve stejném měsíci byly instalovány i parogenerátory. U tohoto bloku jsou tak všechny těžké komponenty na svém místě.

Budování bloků bylo zahájeno v roce 2015 a již v květnu 2017 byla dokončena kopule kontejnmentu bloku 5. Zatím vše probíhá podle plánu. Pokud se bloky podaří dokončit podle předpokladů v roce 2019 a 2020, půjde rovněž o výstavbu trvající 4 až 5 let, tedy doba budování, která se od reaktoru III. generace očekává. Zdá se, že Číňané v tomto případě zúročují své dlouhodobé zkušenosti při kontinuálním budování reaktorů II. i III. generace.

Další dva reaktory tohoto typu se realizují v elektrárně Fang-čcheng-kang, jako bloky 3 a 4. Betonáž reaktorového ostrova prvního z nich začala v prosinci 2015, u druhého pak o rok později. U prvního se koncem května dokončila kopule kontejnmentu. Jeho spuštění se očekává v roce 2019. Druhý by měl být dokončen v roce 2020. Další dva bloky stejného typu se zde plánují a jejich konstrukce by měla být zahájena co nejdříve.

V zahraničí se dva bloky HPR1000 budují v pákistánské jaderné elektrárně Karáčí, první z nich je Karáčí 2 a začal se stavět v roce 2015, Karáčí 3 pak v roce 2016. Do komerčního provozu by měly být uvedeny v letech 2021 a 2022. Koncem roku 2017 byla podepsána smlouva o výstavbě tohoto reaktoru jako pátého bloku pákistánské elektrárny Chašma (Chasma).

V Číně se připravuje výstavba těchto bloků v řadě elektráren: Ning-te 5 a 6 (Nindge, Čang-čou 1 a 2 (Zhangzhou), Chuej-čou 1 a 2 (Huizhou), Čchang-ťiang 1 a 2 (Changjiang). Jejich budování by mělo být zahájeno v nejbližší době. Kdy přesně však jisté není.

Stejný reaktor nabízí čínská firma CGN pro elektrárnu Bradwell ve Velké Británii a uvažuje se o něm i v případě plánované třetí elektrárny Igneada v Turecku. V tomto případě se zvažují rovněž čínské varianty AP1000 nebo CAP1400.

Tento typ reaktoru má velmi silné zázemí v mateřské zemi svého výrobce. Hlavně samotná Čína mu tak zajistí dostatečný počet realizovaných bloků, aby se mohla projevit efektivita výstavby a provozu předpokládaná u reaktorů III. generace.

Instalace reaktorové nádoby bloku Fu-čching 5 (zdroj CNEC).
Instalace reaktorové nádoby bloku Fu-čching 5 (zdroj CNEC).

Reaktor III. generace ABWR

Všechny předchozí zmiňované reaktory jsou tlakovodní. Reaktor ABWR je varný. Je také prvním reaktorem III. generace, který se dostal do provozu. Bylo to v Japonsku a jednalo se o reaktor nabízený firmami GE Hitachi Nuclear Energy a Toshiba. První dva byly dokončeny v letech 1996 a 1997 jako 6 a 7 blok elektrárny Kašiwazaki-Kariwa (Kashiwazaki-Kariwa), která patří firmě TEPCO. Blok Hamaoka 5 začal pracovat v roce 2004 a dokončen byl za čtyři roky. Čtvrtým blokem v operačním provozu je Šika 2 (Shika).

Rozestavěné jsou dva bloky v Japonsku, Šimane 3 (Shimane) a Óma (Ohma). Všechny japonské ABWR bloky jsou však od událostí ve Fukušimě odstavené. Probíhají na nich úpravy, aby vyhověly novým bezpečnostním pravidlům japonského úřadu pro jadernou bezpečnost NRA. První předběžné schválení bezpečnosti pro zmíněné reaktory elektrárny Kašiwazaki-Kariwa dal úřad NRA začátkem října 2017. Proti spuštění reaktorů je však guvernér prefektury i velká část obyvatelstva v okolí. Jejich svolení je podmínkou pro možnost zahájení provozu. Kdy se reaktory znovu rozběhnou, je tak velmi otevřená otázka. Totéž lze říci o spuštění, případně dostavbě těch ostatních.

Dva tyto reaktory jsou těsně před dokončením v elektrárně Lungmen na Tchaj-wanu. Jejich dostavba a spuštění však bylo zmrazeno v roce 2014. Jejich další osud závisí zejména na postoji veřejnosti v této zemi k jaderné energetice.

Reaktor ABWR se plánuje i pro Velkou Británii. Firma Toshiba by jej chtěla budovat v elektrárnách Wylfa a Oldbury. Nelze však odhadnout, jestli se tyto projekty zrealizují.

Osud tohoto typu reaktoru velmi silně závisí na tom, jak se bude vyvíjet situace s jadernou energetikou v Japonsku. I zde se zdá, že si začíná i veřejnost stále více uvědomovat realitu průmyslové země, která musí dovážet fosilní paliva, nemůže elektřinu vyvážet a dovážet a má omezené možnosti pro využití obnovitelných zdrojů. Proto je poslední energetická koncepce založena na tom, že v roce 2030 bude jádro dodávat mezi 20-22 % elektřiny. Je možné, že i nadále se situace bude postupně měnit ve prospěch jádra. Pokud by měl reaktor silné zázemí v mateřské zemi, zvětšila by se pravděpodobnost jeho úspěchu v zahraničí.

Bloky ABWR v elektrárně Kašiwazaki-Kariwa (zdroj Toshiba).
Bloky ABWR v elektrárně Kašiwazaki-Kariwa (zdroj Toshiba).

Další potenciální reaktory III. generace

Další projekty reaktorů III. generace jsou zatím pouze na papíře. Jedním z nich je tlakovodní reaktor ATMEA 1 firem EDF a Mitsubishi Heavy Industry. Reaktor má výkon 1200 MW. Výstavba prvních čtyř se plánuje v druhé turecké jaderné elektrárně Sinop. V tomto případě není zatím stanoven způsob financování a je otevřenou otázkou, jestli a kdy bude stavba zahájena. Dalšími připravovanými bloky III+ generace je vylepšený model varného reaktoru ESBWR. Své pokračování v podobě reaktoru III+ generace by měly mít i kanadské reaktory moderované těžkou vodou Candu s označením ACR-1000. To jsou jen některé zajímavější příklady.

*) Spolu s reaktory CAP1000 a CAP1400. Tabulka: Přehled stavu s výstavbou reaktorů III. generace („Před dokončením“ jsou ty, kterých spuštění se čeká v nejbližších pár letech, „Budované“ jsou ty, které nejméně začaly s přípravou staveniště a „V přípravě“ ty, kde jsou v jednání smlouvy a konkrétní projekt).
*) Spolu s reaktory CAP1000 a CAP1400.
Tabulka: Přehled stavu s výstavbou reaktorů III. generace („Před dokončením“ jsou ty, kterých spuštění se čeká v nejbližších pár letech, „Budované“ jsou ty, které nejméně začaly s přípravou staveniště a „V přípravě“ ty, kde jsou v jednání smlouvy a konkrétní projekt).

Závěr

Nyní jsme v situaci, že v provozu je již šest typů reaktorů III. generace a sedmý má těsně před dokončením a spuštěním. Čtyři z nich splňují kritéria generace III+. Bude tak možné sledovat, jaká je jejich efektivita, ekonomika a spolehlivost.

Ekonomické výhody reaktorů III. generace se ve velké míře začnou projevovat v situaci, kdy se budou budovat sériově ve větším počtu kusů. Jen v tom případě se efektivně využijí postupně získávané zkušenosti. Je tak jasné, že šanci pro masovější využití a úspěch má jen omezený počet typů ze zmiňovaných typů. Kolik jich bude a které nakonec u zákazníků uspějí závisí na tom, kolik jich bude celkově potřeba a jak naplní jejich očekávání. Výhodou pro všechny typy bude, že zvyšující se celkovým počet povede k růstu zkušeností u subdodavatelů. Ti pracují pro více firem. Například naše Škoda JS dodává komponenty pro reaktory EPR i VVER1200.

V tomto směru je na tom nejlépe a reaktor VVER1200 firmy Rosatom. Navazuje na dlouhodobou kontinuální tradici výstavby jaderných bloků doma i ve světě. Dokáže zajistit veškerý servis pro výstavbu, provozování i likvidaci jaderných zařízení. Jeho reaktor III+ generace má již dvě jednotky v provozu a čtyři těsně před dokončením, dvě z nich jsou v zahraničí. Buduje nebo má v pokročilém stavu přípravy 23 bloků, z nich tři jsou v Evropské unii. To poskytuje dostatečné zázemí pro sériovou výrobu a využití výhod spojených právě se standardizací velké části komponent a dlouhodobou stabilitu řetězců dodavatelských firem. V Rusku existuje i vize rozvoje jaderné energetiky a jejího využití pro snížení podílu fosilních paliv. Firma tak má dlouhodobou perspektivu domácího zázemí.

Stagnace jaderné energetiky v Evropě a odchod některých států od tohoto způsobu výroby elektřiny vedou ke stále větší závislosti na plynu, jeho dovozu z Ruska a jeho důsledkem je i budování plynovodu Nordstream (zdroj Nordstream).
Stagnace jaderné energetiky v Evropě a odchod některých států od tohoto způsobu výroby elektřiny vedou ke stále větší závislosti na plynu, jeho dovozu z Ruska a jeho důsledkem je i budování plynovodu Nordstream (zdroj Nordstream).

Podobně je na tom kombinace čínských reaktorů ACPR1000 a HPR1000 (Hualong One). Tam je sice v provozu jen jeden blok ACPR1000, ale těsně před dokončením je devět těchto reaktorů a 11 se buduje nebo se jejich stavba připravuje. Zároveň se Číně daří své bloky III. generace dokončovat v termínech, které odpovídají celkové době výstavby okolo pěti let. Čína má rozsáhlý domácí projekt rozvoje jaderné energetiky a jejího využití v kombinaci s obnovitelnými zdroji a elektromobilitou pro snížení emisí, které dusí čínská města. I u tohoto reaktoru je velká šance, že se stane klíčovým pro jadernou energetiku následujících desetiletí.

Pro úspěch reaktoru EPR firmy Framatom je rozhodující, jak bude probíhat stavba těchto bloků ve Velké Británii a jak se bude vyvíjet situace s jadernou energetikou ve Francii. Tedy, jestli se podaří pozitivně využít zkušenosti z dosavadních staveb a firma bude mít i zázemí budování reaktorů v mateřské zemi. Jeho budoucnost je tak stále nejistá.

Pokud jde o jihokorejský reaktor III. generace firmy KEPCO APR1400, je klíčový přechod k variantě APR+, která splňuje parametry III+ generace. Ta se měla jako první uplatnit v Jižní Koreji, ovšem po nedávné volbě nového prezidenta došlo k vyhlášení zastavení budování nových jaderných zdrojů a postupný odchod od jaderné energetiky. Pokud Jižní Korea zůstane u tohoto moratoria na nové jaderné zdroje, bude to pro aktivity firmy KEPCO v zahraničí velký hendikep. Otázka budoucnosti tohoto reaktoru je tak značně nejistá.

Nejistá je i budoucnost reaktoru AP1000. Ten také nemá mateřské zázemí a firma Westinghouse v daném případě předpokládá spíše nabídku pouze projektu bez zajištění realizace. Situace se částečně mění při zahrnutí čínské varianty CAP1000 a CAP1400. Je však otázkou, do jaké míry bude mít Čína zájem pokračovat v tomto směru, prioritou u ní může být spíše reaktor HPR1000 (Hualong One).

Všechny varné reaktory ABWR jsou po Fukušimě stále mimo provoz. Budoucnost tohoto reaktoru také závisí na tom, jak se podaří realizace varianty o vlastnostech III+ generace a jaká bude budoucnost výroby elektřiny z jádra v Japonsku.

Pochopitelně však bude budoucnost reaktorů III. generace záviset hlavně na tom, jak se jejich jednotlivé typy osvědčí v provozu. Zvláště na tom, jak budou efektivní, ekonomické a spolehlivé. Jako u všech jaderných technologií je však nejdůležitější bezpečnost.

Pokud se Česko nebo libovolný jiný evropský stát rozhoduje o vybudování nových jaderných reaktorů, je velice pravděpodobné, že musí vybrat ze zmíněných typů a výrobců. Pro Českou republiku jsou navíc reaktory EPR a AP1400 až moc velké a vzhledem k naším dlouhodobým zkušenostem je rozumné zůstat u tlakovodních reaktorů. Reálně tak jako nejpravděpodobnější volba vychází ruský nebo čínský reaktor.

Evropa se tak vlivem dominující protijaderné ideologie stává silně závislou nejen na dovozu ruského plynu a čínské fotovoltaiky, ale také na ruských a čínských jaderných reaktorech. Je sice pravda, že Rusko pomocí jaderných bloků ušetří plyn pro vývoz do Evropy a Čína bude s využitím dostatku i jaderné elektřiny produkovat efektivně a ekonomicky fotovoltaiku a elektromobily, které může vyvážet do Evropy. Evropa tak může tímto dovozem své energetické potřeby uspokojovat. Vše však může mít pro evropské státy velmi negativní dopady. Stále rychleji se z ní budou přesouvat nejen energeticky náročná odvětví a technologie, které z velké části nahradí služby. Je otázkou, jaký to bude mít dopad na technologickou úroveň a vyspělost Evropy a životní úroveň jejich obyvatel.

 Článek byl napsán pro servery oEnergetice a Osel.

Poznámka: V nejbližších týdnech se objeví v knihkupectvích kniha kolektivu autorů „Česká energetika na křižovatce“, která navazuje na knihu „Perspektivy české energetiky“. Rozebírá změny, které nastaly od přijetí aktualizace státní energetické koncepce u nás i v našem blízkém a vzdálenějším okolí. Upozorňuje na rizika, která se i vlivem nečinnosti před naší energetikou vynořují a rychle blíží. Ukazuje, jaké jsou možnosti rizikům čelit a zajistit pro Česko efektivní, ekologickou a udržitelnou energii.

Česká energetika na křižovatce
Česká energetika na křižovatce

Úvodní obrázek: Dokončení kopule bloku Hualong One (HPR1000) Fu-čching 6 (zdroj CNI23).

Komentáře

0 komentářů ke článku "undefined"

Přidat komentář

Vaše emailová adresa nebude zveřejněna. Vyžadované informace jsou označeny *