Toto je druhý díl článku o současnosti i budoucnosti jaderné energetiky a jejím potenciálu ve světě i v Česku. První díl naleznete zde.

Jaké jsou nutné podmínky pro využívání jaderné energie?

Rozvoj a využívání jaderné energetiky nejsou vhodné pro všechny státy. Důležitou podmínkou je přítomnost vzdělané a technologicky rozvinuté společnosti. Pokud se daná země pro využívání jaderné energie rozhodne, jde o dlouhodobý závazek. Samotné jaderné bloky mají životnost, která u těch moderních dosahuje šedesáti let a je třeba také počítat s jejich likvidací po skončení životnosti a také případné recyklace vyhořelého paliva a uložení zbývajícího vysoce aktivního jaderného odpadu pod zem. Objem vzniklého jaderného odpadu je relativně velmi malý, takže bez ohledu na intenzitě využívání jaderné energetiky v dané zemi v principu stačí jedno hlubinné úložiště. Intenzivní využívaní jaderné energie tak nejen z tohoto důvodu silně snižuje náklady na jednotku vyrobené energie.

Velmi důležitým faktorem pro využívání jaderných elektráren je jejich akceptace veřejností a stabilita této podpory. Jde o velmi dlouhodobou investici, která je citlivá na dlouhodobou politickou, vzdělanostní i ekonomickou stabilitu společnosti.

Důležitým úkolem pro akceptaci jaderné energetiky je demonstrace, že dokážeme podzemní konečné úložiště jaderného odpadu vybudovat. Významným zlomem je tak stavební povolení, které obdržela v listopadu 2015 firma Posiva pro výstavbu trvalého podzemního úložiště ve finském Olkiluoto. O budování podzemního trvalého úložiště rozhodly finská vláda, parlament a samosprávy v roce 2001 a razící práce začaly v roce 2004. Podzemní komplex Onkalo vzniká v žulovém masivu zhruba 5 km od jaderné elektrárny Olkiluoto.

K ukládání se využije metoda KBS-3 vyvinutá ve Švédsku, kdy se jaderný odpad uloží do litinových kontejnerů obohacených bórem, které obsahují 12 palivových souborů. Ty se dají do měděné obálky a ta se pak zasune do betonitu, kterým se vyplní kruhová díra hluboká devět metrů a průměru dva metry. Tato lože pro kontejnery jsou v chodbách v hloubce zhruba 500 m pod povrchem.

Vyhořelé palivo se u nás zatím ukládá v suchých meziskladech kontejnerech typu Castor (zdroj Škoda JS a.s.)
Vyhořelé palivo se u nás zatím ukládá v suchých meziskladech kontejnerech typu Castor (zdroj Škoda JS a.s.)

Vybudovány jsou tři šachty (jedna pro personál a dvě ventilační), přístupový tunel do hloubky až 455 m a testovací tunely, které slouží ke geologickému průzkumu a ověřování technologií. Přístupový tunel má sklon 1:10, šířku 5,5 m a výšku 6,3 m. V současné době bylo zahájeno reálné budování úložiště. Dokončení jeho první etapy se očekává v roce 2020, kdy by mělo zařízení dostat provozní licenci. Ukládání jaderného odpadu by tak mělo být zahájeno v roce 2023. Zatím se předpokládá provoz zhruba okolo 100 let a poté by mělo být úložiště zaplombováno. Předpokládá se zde uložení odpadu z jaderných elektráren Loviisa a Olkiluoto. Dohoda mezi firmou Posiva a elektrárnou Hanhikivi se nezdařila, takže ta předpokládá zatím vybudování nového úložiště.

Předpokládané náklady na vybudování by měly být okolo 27 miliard korun a celková částka se zahrnutím provozu po zmíněných sto let pak okolo 95 miliard korun. Půjde o první zprovozněné trvalé úložiště silně radioaktivního dlouhodobého odpadu. Hlavním úkolem je ukázat, že existuje metoda řešení problému s jaderným odpadem. Úspěchy a zkušenosti Finska s prosazením a budováním trvalého úložiště chce využít řada států s jadernou energetikou včetně Česka.

Havárie v jaderné energetice

Jedním z hlavních argumentů oponentů jaderné energetiky je riziko havárie. Je jasné, že stejně jako jiné technologie, má i jaderná energetika svá rizika. Ozáření či únik radioaktivity do životního prostředí mohou být velice nebezpečné, proto se věnuje eliminaci této možnosti extrémní pozornost. A bezpečnostní nároky na jaderná zařízení jsou velmi vysoká. Na druhé straně byly za celou dobu využívání jaderné energetiky pouze tři velké havárie, které vedly k masivnějšímu úniku radioaktivity.

Havárii reaktoru v elektrárně Three Mile Island v roce 1979 vedla jen k velmi mírnému úniku radioaktivních látek a neměla dopady na životní prostředí v okolí či lidské zdraví. Dekontaminace, likvidace zničené aktivní zóny a odvoz radioaktivního materiálu z elektrárny byly dokončeny v roce 1990. S likvidací budovy zničeného druhého bloku se čeká až na skončení provozu prvního bloku, aby se využilo synergií spojených se společnou likvidací.

V říjnou 2016 se nový sarkofág se nasunul nad zničený čtvrtý černobylský blok (zdroj Tim Porter, wikipedie).
V říjnou 2016 se nový sarkofág se nasunul nad zničený čtvrtý černobylský blok (zdroj Tim Porter, wikipedie).

Havárie čtvrtého bloku Černobylské jaderné elektrárny v roce 1986 byla největší katastrofou v jaderné energetice. Byla způsobena flagrantním porušením bezpečnostních pravidel směnou, která prováděla experiment s využitím doběhu turbíny. Přispěly k ní i z bezpečnostního hlediska nevhodná řešení některých prvků reaktoru RBMK a utajování okolo tohoto modelu vyvinutého z původně vojenského reaktoru.

Tyto bloky navíc nemají kontejnment. Následkem byla nejhorší událost, která může v jaderné energetice nastat. Roztavená aktivní zóna a její části se dostaly do otevřeného prostoru. Požár, který vznikl, likvidovali hasiči, kteří nevěděli o míře katastrofy. I to byl důvod, proč téměř 50 pracovníků zahynulo následkem nemoci z ozáření.

Evakuace probíhala až v době největších úniků radioaktivity. Zároveň se nepodařilo z ekonomických i politických důvodů zabránit proniknutí radioaktivního jódu do potravinového řetězce. Další oběti, které tak lze přímo přisoudit havárii je 14 úmrtí na rakovinu štítné žlázy, které nastaly do současné doby. Celkový počet rakoviny štítné žlázy, který lze dominantně přisoudit vlivu radiace, je do současnosti téměř 7000. Naštěstí ji lze poměrně dobře léčit. Jediným dalším zdravotním dopadem, který byl prokázán v epidemiologických studiích, bylo slabé zvýšení pravděpodobnosti leukémie u likvidátorů, kteří se přímo podíleli na likvidaci následků havárie.

Pokud tedy existují odhady počtu úmrtí, jde o odhady využívající extrapolace závislosti zvýšení pravděpodobnosti onemocnění (zvláště rakoviny) na obdržené dávce do oblasti nízkých a velmi nízkých dávek. Při využití a extrapolaci této závislosti ze známé studie BEAR VII, jsou odhady pro takto postižené obyvatele, tedy likvidátory, evakuované a obyvatelé zasažených území, kterých je zhruba 7 milionů, mezi 6 000 až 20 000 úmrtí na rakovinu pro postiženou generaci. Normálních případů rakoviny je u takto početné skupiny zhruba 1 700 000.

Nedávno se dokončilo zamrazování ledové stěny, která zabraňuje pronikání spodní vody do kontaminovaného okolí zničených reaktorů ve Fukušimě I (zdroj TEPCO).
Nedávno se dokončilo zamrazování ledové stěny, která zabraňuje pronikání spodní vody do kontaminovaného okolí zničených reaktorů ve Fukušimě I (zdroj TEPCO).

V likvidaci následků havárie nastal klíčový zlom v letech 2016 a 2017. Dokončil se nový sarkofág, který hermeticky uzavřel starý sarkofág a zničený blok. Odstranilo se tak riziko úniku radioaktivity ze zničeného reaktoru. Lze tak otevřít doposud uzavřená území. Z největší části bude národní park, který byl vyhlášen právě v dubnu 2016 k třicátému výročí havárie (podrobněji zde a zde). Tato část Ukrajiny byla již před havárií velmi řídce osídlená a příroda zůstala nedotčená. Po odchodu lidí následkem havárie se příroda rozvíjela bez zásahů člověka a došlo k nárůstu populace nejen velkých savců, jako jsou zubři, losové, koně převalského, vlci či lišky. Zvláště ekologové prosazují pokračování omezení vstupu do této části evakuované zóny. Krásná nedotčená příroda bude atraktivní nejen pro biology, ale i pro turisty. V menší části v blízkosti elektrárny se buduje průmyslová zóna. Zatím se zde dokončuje suchý mezisklad pro vyhořelé palivo z ukrajinských jaderných elektráren. Začalo se také s první částí velké fotovoltaické elektrárny, jejíž výkon by měl být v řádu jednotek gigawattů. Zde se využije již vybudované vedení, které přepravovalo elektřinu z jaderných bloků. V dalších částech budou památníky na tuto průmyslovou katastrofu a její oběti. Půjde nejspíše o část města Pripjať a některé budovy elektrárny. Samotná likvidace starého sarkofágu a hlavně zničeného reaktoru bude trvat desetiletí, ale revitalizace postižených území už se rozbíhá.

Na rozsahu následků havárie v jaderné elektrárně Fukušima I se také podílela lidská pochybení, ale vyvolala ji jedna z největších přírodních katastrof, která lidstvo zasáhla. Zemětřesení elektrárna vydržela bez následků, katastrofu způsobila až vlna cunami. Havárie elektrárny neměla žádné přímé oběti, cunami naopak usmrtila v pobřežních oblastech téměř 20 tisíc lidí. Únik radioaktivity byl sice značný, ale díky kontejnmentům byl omezený a proběhl v době, kdy už byla dokončena evakuace okolních území. Bylo možné provést všechna potřebná opatření, aby se nedostala do potravinového řetězce a neohrozila obyvatelé. Zdravotní dopady havárie tak budou zanedbatelné, což potvrzují všechny prováděné epidemiologické studie. Kromě těch nejsilněji kontaminovaných území v přímém okolí elektrárny se už podařilo zasažené a evakuované oblasti dostatečně vyčistit a bylo možné je otevřít pro návrat lidí. Většina evakuovaných obyvatel se tak mohla vrátit. V současné době probíhá intenzivní dekontaminace zmíněných silně kontaminovaných území a k jejich otevření by mělo dojít v roce 2021.

Budování nové horní části zničeného třetího bloku v elektrárně Fukušima I, po instalaci jeřábů bude možné vyvézt bazén pro vyhořelé palivo (zdroj TEPCO).
Budování nové horní části zničeného třetího bloku v elektrárně Fukušima I, po instalaci jeřábů bude možné vyvézt bazén pro vyhořelé palivo (zdroj TEPCO).

V samotné elektrárně došlo při havárii ke zničení a tavení aktivních zón tří reaktorů a výbuchem vodíku, který se do něj dostal ze třetího bloku, byl zničen i čtvrtý blok, který měl v té době aktivní zónu prázdnou. Do roku 2017 se už podařilo vyvézt palivové soubory z bazénu zmíněného čtvrtého bloku. V pokročilém stavu jsou práce na vyvezení bazénů prvního, druhého a třetího bloku. Předpokládá se, že se všechny vyprázdní do roku 2022. Podařilo se vyčistit všechnu kontaminovanou vodu, která se nahromadila, od všech radionuklidů kromě tritia. Těžký vodík totiž nelze chemicky z vody oddělit. Nyní je téměř 600 tisíc tun vody uloženo ve svařovaných nádržích. Celková dostupná kapacita je až 900 tisíc tun.

Tritium je přirozenou součástí životního prostředí, vzniká interakcí kosmického záření v atmosféře. V principu by se tak nádrže při dostatečném zředění daly bez ekologických dopadů vypustit do moře. To však je jen velmi těžko akceptovatelné pro rybáře, proto se uvažuje o separaci tritia. Ta by však byla velmi nákladná. Konečné řešení otázky kontaminované vody se čeká v nejbližších letech. Do nitra kontejnmentů tří zničených bloků se už nahlédlo endoskopy, u všech se pomocí kosmických mionů zjistilo, že jejich aktivní zóny byly z velké části roztaveny. Podívaly se do nich také roboti. Třetí zkoumal podvodní robot a podařilo se mu najít zbytky ztuhlé taveniny z paliva. V nejbližších letech by se měl prozkoumat jejich stav, ale úplná likvidace zbytků roztaveného paliva bude trvat řadu desetiletí. Podrobný rozbor průběhu havárie ve Fukušimě I, jejich následků a likvidace dopadů lze najít v knize Fukušima I poté, v cyklu článku na Oslovi (jeho poslední část je zde) a přednášce.

Je jasné, že sociální a ekonomické dopady havárií v Černobylu a Fukušimě byly velké a drasticky zasáhly do života velkého počtu lidí. Popsané tři havárie zná téměř každý, naopak řadu protržení přehrad, které měly daleko více obětí, si nepamatuje téměř nikdo. A ještě více to platí pro důlní katastrofy nebo exploze ropovodů či plynovodů. Reálné statistiky, které porovnávají oběti a škody na jednotku výroby pro jednotlivé zdroje energie, ukazují, že ty jaderné patří mezi ty nejbezpečnější. Daleko větší následky a větší počty obětí mají i sociální a ekonomické kolapsy, které způsobuje nedostatek nebo vysoká cena energie. Je však třeba také připomenout, že i na základě zkušeností ze zmíněných tří havárií se u fungujících i nově stavěných bloků dramaticky zvýšila jejich bezpečnost. Zvláště reaktory III+ generace jsou tak velmi bezpečné a s extrémně nízkým rizikem havárie.

Současný stav jaderné energetiky

V současné době mají nejvíce jaderných energetických reaktorů Spojené státy, celkem 99. Ovšem z jádra vyrábí pouze zhruba 20 % elektřiny. Druhá v pořadí je Francie, která má 58 reaktorů, z nichž však získává přes 70 % elektřiny. Okolo 50 % elektřiny z jádra a více produkují v současné době ještě Belgie, Maďarsko, Slovensko a Ukrajina. V Evropě dodávají jaderné bloky zhruba čtvrtinu elektřiny.

Maďarsko získává okolo 50 % elektřiny z jádra i díky modernizaci čtyř bloků VVER440 v jaderné elektrárně Paks. Na obrázku jsou nové turbíny (zdroj Alstom).
Maďarsko získává okolo 50 % elektřiny z jádra i díky modernizaci čtyř bloků VVER440 v jaderné elektrárně Paks. Na obrázku jsou nové turbíny (zdroj Alstom).

Zatímco v sedmdesátých a osmdesátých letech celkový výkon jaderných elektráren i výroba elektřiny z jádra rychle rostly, už koncem osmdesátých let se růst zpomalil a od konce devadesátých let probíhá stagnace. Velká část růstu výroby pochází ze zlepšování parametrů již existujících bloků. Maximum výroby elektřiny nastalo v roce 2006 na úrovni 2658 TWh. V roce 2011 a 2012 nastal propad způsobený vypnutím japonských bloků po Fukušimě a také rychlým odstavením části německých reaktorů. Částečně byl tento propad kompenzován dokončením nových bloků v Číně. V posledních dvou letech se také začaly do provozu vracet některé japonské reaktory. Pokud by začaly fungovat i zbývající japonské bloky, tak už by nyní bylo překročeno zmíněné maximum z před více než deseti léty. Lze tak předpokládat, že v následujících několika letech se světová jaderná energetika přes tuto výrobu dostane.

Zatímco v Číně, Indii, Rusku a některých dalších státech se pomalu rozbíhá renesance výstavby jaderných zdrojů, v Evropě a Americe probíhá stagnace. V roce 2014 se spustilo pět bloků, z toho čtyři v Číně, v roce 2015 deset bloků, z nich osm v Číně a v roce 2017 opět deset bloků a pět z nich bylo čínských.

Rusko zahájilo stavbu třetího a čtvrtého bloku v indické elektrárně Kudankulam (zdroj Rosatom).
Rusko zahájilo stavbu třetího a čtvrtého bloku v indické elektrárně Kudankulam (zdroj Rosatom).

V Evropě se staví jen pár bloků. Kromě zmíněných reaktorů EPR ve Finsku a Francii jsou to dva bloky VVER440 ve slovenských Mochovcích. U těchto projektů se však pozoruje řada problémů a zdržení. Ukazuje se, že Evropa ztrácí schopnost efektivní realizace takových staveb. Připravuji se staveniště v maďarském Paksi, finském Hanhikivi a britském Hinkley Point C, která ukáží, jak na tom Evropa se schopnostmi realizovat jaderné bloky je. Reálné budování v Paksu začne v lednu 2018. O některých dalších se třeba i v Česku uvažuje. V současné době je však hlavní starostí péče o stárnoucí flotilu evropských jaderných elektráren. Původní licence reaktorů byly většinou na třicet let. Ukazuje se však, že při odpovídající péči a vylepšování je lze bezpečně provozovat čtyřicet, padesát, ba i šedesát let.

Čína a Jižní Korea ukazují, že dokáží realizovat výstavbu jaderných bloků sériově do šesti i pěti let. K takovému stavu se blíží i Rusko. Zároveň firmy těchto států nabízejí podobně efektivní výstavbu i v zahraničí.

Nejen v Německu se ukázalo, jak silně jadernou energetiku ovlivňuje politika a ideologie. Německé jaderné reaktory byly velice úspěšné, efektivní a bezpečné. To se týkalo i firem, které je stavěly. Přesto bylo učiněno politické rozhodnutí v Německu využívání jádra ukončit. Podobná situace v současné době hrozí v Jižní Koreji. Nově zvolený prezident Jižní Koreje rozhodl o postupném ukončení využívání jádra v této zemi. Následně byly pozastaveny přípravy výstavby bloků Sin Hanul 3 a 4. Zároveň se také urychlila příprava na již plánované odstavení nejstaršího korejského jaderného reaktoru Kori 1, který se tak zastavil 19. června 2017. Velký otazník se také vznáší na pokračování stavby bloků Sin Kori 5 a 6. Nové vedení této země chce také snížit využívání uhlí a dominantně se spoléhat na dovážený plyn a obnovitelné zdroje. Podmínky pro ně jsou však zde značně omezené, takže je otevřenou otázkou, jaký bude mít tato nová energetická politika vliv na tuto průmyslovou exportní zemi bez vlastních energetických zdrojů.

Jak s fúzí?

Cesta k energetickému využití fúze je stále ještě dlouhá. Zařízení ITER budované ve francouzském Cadarache by mělo ukázat možnost uvolňovat násobky energie vůči té, která je potřebná na ohřev plazmatu. Zde však zatím nepůjde o elektrárnu. Jde o tokamak, který dokáže udržet pomocí silného magnetického pole extrémně horké plazma a umožní intenzivní průběh fúze těžkých izotopů vodíku deuteria a tritia. Bude se zde studovat dlouhodobé udržení plazmatu, jeho vlastnosti a průběh slučování. Důležitým úkolem je také testování materiálů komory, diagnostických zařízení i probíhajících reakcí. Jedná se o největší vědecký projekt a současné odhady jeho ceny jsou okolo 20 miliard euro. Předpokládá se, že první plazma v zařízení vznikne v roce 2025 a fúzní experimenty začnou pravděpodobně až po roce 2030.

Na budování fúzního reaktoru ITER se intenzivně pracuje a výsledky jsou vidět (zdroj ITER).
Na budování fúzního reaktoru ITER se intenzivně pracuje a výsledky jsou vidět (zdroj ITER).

První demonstrační elektrárnou bude až zařízení DEMO, při jehož konstrukci se využijí zkušenosti získané při provozu tokamaku ITER. Zde už se bude demonstrovat i produkce paliva, kterým je radioaktivní tritium. To bude vznikat v plášti okolo fúzní komory, který bude vyplněn lithiem. Reakcí neutronu s tímto jádrem vzniká tritium. DEMO už bude mít i turbínu a bude produkovat elektřinu. Před zahájením projektu je však potřeba získat dostatek zkušeností při práci na tokamaku ITER. Nelze tak očekávat, že by se DEMO začal stavět před rokem 2030, nejspíše však až v pozdních třicátých letech.

Teprve na základě tokamaku DEMO se budou připravovat konkrétní projekty komerčních fúzních elektráren. Je tak jasné, že do komerční energetiky zasáhnou nejdříve v druhé polovině tohoto století. A v každém případě půjde o velké bloky s výkonem v řádu tisíce megawattů.

Mezi štěpnou a fúzní energetikou je celá řada synergií. Ve fúzních reaktorech vznikají také velmi intenzivní pole neutronů a jsou pro ně velmi důležitá data o interakci neutronů s řadou konstrukčních materiálů a vývoj hmot odolných proti radiaci a extrémním teplotám. Firmy, které v současné době dodávají komponenty pro štěpné reaktory, budou těmi, které se budou podílet i na konstrukci elektráren fúzních. Je tak jasné, že země s rozvinutou štěpnou jadernou energetikou budou mít náskok a vhodné podmínky pro rozvoj energetiky fúzní.

Jak v České republice?

Jaderná elektrárna Temelín má dva bloky VVER1000 (zdroj ČEZ).
Jaderná elektrárna Temelín má dva bloky VVER1000 (zdroj ČEZ).

Česká republika má v rozvoji a využívání jaderné energetiky velmi dlouhou a úspěšnou tradici. Má dostatečné vzdělanostní a technické zázemí, které se vytvářelo v poválečném Československu. Má potřebné výzkumné zázemí soustředěné hlavně v areálu v Řeži, kde jsou dva výzkumné reaktory a urychlovače s instalovanými neutronovými zdroji. Zde jde hlavně o organizace ÚJV a.s., Centrum výzkumu Řež s.r.o. a Ústav jaderné fyziky AV ČR. Ústav fyziky plazmatu AV ČR provozuje velký výzkumný tokamak COMPASS, který je stejného typu jako ITER. Vysokoškolské vzdělávání je spojeno hlavně s Fakultou jadernou a fyzikálně inženýrskou ČVUT, ale i dalšími technickými školami. Zmíněná fakulta má výzkumný reaktor VR-1 Vrabec a tokamak Golem. Řada průmyslových podniků je zapojena do výroby komponent jaderných technologií. Jmenujme alespoň několik: ŠKODA jaderné strojírenství, MODŘANY power a.s., ŠKODA Praha, Vítkovice, a.s. a řada dalších. I když je třeba připomenout, že některé z těchto firem mají v posledních letech dost velké problémy.

První československou jadernou elektrárnou byl demonstrační těžkovodní reaktor chlazený oxidem uhličitým A-1 v Jaslovských Bohunicích na Slovensku. Zde se následně vybudovaly v letech 1980 až 1985 čtyři ruské tlakovodní bloky VVER-440. V současné době jsou v Česku dvě jaderné elektrárny, v Dukovanech jsou čtyři reaktory VVER-440 a v Temelíně pak dva reaktory VVER-1000. V obou elektrárnách se postupnými vylepšeními zvýšil výkon jednotlivých bloků. V Dukovanech mají hrubý výkon 510 MWe, tedy dohromady 2040 MWe a v Temelíně 1055 MWe, dohromady 2110 MWe. Celkově tak máme v jádře 4150 MWe. Jádro dodává zhruba 35 % vyrobené elektřiny, ale přesná čísla závisí na konkrétní situaci v daném roce.

Jaderná elektrárna Dukovany s vyrovnávací nádrží Mohelno (zdroj ČEZ).
Jaderná elektrárna Dukovany s vyrovnávací nádrží Mohelno (zdroj ČEZ).

Palivo pro tyto jaderné bloky je v současnosti odebíráno od ruské firmy TVEL, ale zkoušelo se i palivo pro bloky VVER-1000 od firmy Westinghouse. V současné době umí švédská pobočka této firmy vyrábět i palivové soubory pro reaktory VVER-440. Je tak zaručena diversifikace dodavatelů paliva. Navíc je objem a hmotnost potřebných palivových souborů natolik malý, že není problém je dopravit odkudkoliv a zároveň je možné uskladnit zásoby paliva na řadu let, v principu na celou dobu životnosti elektrárny.

Suché mezisklady pro vyhořelé palivo uložené v kontejnerech typu Castor jsou schopny pojmout jeho objem odpovídající celé potenciální životnosti elektráren. Místo pro trvalé úložiště vyhořelého paliva se zatím ještě vybírá. Dá se předpokládat přepracování vyhořelého paliva a jeho využití buď v klasických reaktorech v podobě paliva MOX nebo v pokročilých budoucích jaderných reaktorech IV. generace. V každém případě potrvá řadu desetiletí, než bude potřeba uložit jaderný odpad do trvalého podzemního úložiště.

Jaké reaktory, kde a jak budovat?

Česká republika má omezené možnosti pro cestu k nízkoemisní energetice. Jaderné zdroje tvoří její dominantní část a mají i největší potenciál. Dukovany už mají polovinu životnosti za sebou a je potřeba vytvářet podmínky pro jejich náhradu. Současný předpoklad je, že budou fungovat zhruba do roku 2035. Příprava výstavby nových bloku je časově náročná, navíc nelze dobu potřebnou pro splnění všech formálních podmínek pro posouzení a schválení stavby přesně odhadnout. Pokud máme mít nové bloky k dispozici před uzavřením Dukovan, je potřeba reálnou přípravu výstavby zahájit co nejdříve.

Reaktorová hala třetího bloku elektrárny Mochovce v roce 2016 (zdroj Mochovce).
Reaktorová hala třetího bloku elektrárny Mochovce v roce 2016 (zdroj Mochovce).

Nejlépe připraveny jsou podmínky pro výstavbu dvou bloků v Temelíně. Tyto bloky zde byly plánovány už na začátku a vše je pro ně přichystáno. S největší pravděpodobností se však začne s budováním jednoho bloku v Dukovanech a jednoho v Temelíně. Důvodem je, že je potřeba začít s náhradou původních bloků ve starší z elektráren.

Včasné zahájení přípravy potřebuje dvě důležitá rozhodnutí. Prvním je řešení způsobu financování a druhým je výběr bloků, které se budou stavět. Rozhodnutí o tom, který reaktor se bude stavět, je podřízeno několika základním požadavkům. Musí jít o reaktor III. generace. Důležité je, aby reaktor byl již někde v provozu a byly pozitivní zkušenosti z jeho výstavby. Důležitým parametrem je určitě i míra možné účasti českých firem při budování použitého modelu reaktoru.

Nejmodernější bloky VVER1000 už mají řadu prvků reaktorů III. generace. Tyto modely se nejnověji dokončují v čínské elektrárně Tchien-wan (zdroj Rosatom).
Nejmodernější bloky VVER1000 už mají řadu prvků reaktorů III. generace. Tyto modely se nejnověji dokončují v čínské elektrárně Tchien-wan (zdroj Rosatom).

Podívejme, co lze o tomto výběru říci na základě předchozího přehledu o současném stavu jaderné energetiky. Jak bylo zmíněno, jsou v současné době v provozu pouze tři reaktory třetí generace. Japonský reaktor ABWR je varného typu, který se u nás zatím nevyužíval. Zároveň jsou všechny tyto reaktory v Japonsku odstavené. Jihokorejský blok APR-1400 má výkon 1400 MWe, což je pro naše účely, hlavně v areálu Dukovan příliš velká hodnota. V nejbližších letech budou bloky v provozu v Jižní Koreji i v zahraničí, což je velmi pozitivní. Na druhé straně je otázka, jak se dívat na nákup bloků od země, která se rozhodla od využívání jádra odstoupit a u sebe už další tyto bloky budovat nebude.

Zůstává tak ruský reaktor VVER1200, který v nejbližších letech bude běžet jak v Rusku, tak v zahraničí. Firma, která jej nabízí, staví reaktory kontinuálně a poměrně velmi úspěšně. S reaktory VVER máme velice dobré zkušenosti a řada českých firem se podílí na výrobě jejich komponent a výstavbě těchto elektráren. Tyto reaktory se brzy budou budovat v našem sousedství v Maďarsku a také ve Finsku. I na těchto stavbách by se měly podílet české firmy a budeme moci sledovat průběh výstavby.

V nejbližší době by se do provozu měly dostat i další reaktory III+ generace. Jde o reaktor AP1000. Firma Westinghouse a s ním i Toshiba mají však velké finanční problémy a je otázka, jestli se vůbec do budování dalších těchto reaktorů pustí. Řada negativních zkušeností je i z budování těchto bloků v USA. I když zde jde hlavně o neschopnost amerických stavebních a inženýrských firem, které ztratily za čtvrtstoletí přestávky v budování jaderných bloků kontinuitu a zkušeností. Je sice možné, že by se pro nabízení těchto bloků rozhodla Čína, kde se již brzy čtyři spustí, ale není to moc pravděpodobné. Čína se možná zaměří na nabídku svého modelu Hualong One. Ten je však ještě několik let před dokončením.

Pro jadernou elektrárnu Forsmark dodala Škoda JS mříž a plášť aktivní zóny varného reaktoru (zdroj Škoda JS).
Pro jadernou elektrárnu Forsmark dodala Škoda JS mříž a plášť aktivní zóny varného reaktoru (zdroj Škoda JS).

Bloky EPR jsou podobně jako APR-1400 příliš velké a do značné míry je diskvalifikují i negativní zkušenosti z výstavby ve Finsku a Francii. Je sice pravda, že je vysoce pravděpodobné, že po roce 2018 poběží již ve třech zemích, ale přesto není pro naše účely příliš vhodný.

Jak je vidět, zůstává pro případnou soutěž o nové reaktory u nás jediný kandidát, který nemá zásadní problémy. Jde o ruský reaktor VVER1200. Ať se však v budoucnu výběr uskuteční s jakýmkoliv výsledkem, ukazuje se, že jedním z klíčových momentů pro úspěch výstavby jaderných bloků v dané zemi jsou schopnosti stavebních a inženýrských firem, které jsou hlavními dodavateli. To ukazuje, co je třeba podporovat u nás v každém případě. Je nutné, aby se české vědecké instituce podílely na výzkumu v oblasti štěpení a fúze a české firmy se co nejintenzivněji podílely na dodávce komponent a samostatné výstavě jaderných bloků jak v Evropě, tak ve světě. To se zatím daří. A je nutné, aby si tuto schopnost zachovaly.

V současné době ukazují ruské, korejské a čínské firmy, že lze bloky stavět i za šest let. Ovšem zkušenosti z Evropy a USA jsou zatím jiné. Navíc se v Evropě extrémně zvýšily byrokratické překážky pro stavbu libovolného většího energetického zdroje. A u jaderných bloků je pochopitelně situace v tomto směru nejnáročnější. Příprava před zahájením stavby tak trvá léta. Pokud tedy chceme splnit cíle v aktualizaci státní energetické koncepce, tedy včas připravit náhradu bloků v Dukovanech, kterým by měla končit životnost kolem roku 2035, a alespoň část uhelných bloků nahradit jádrem, je potřeba co nejrychleji rozhodnout o způsobu realizace stavby reaktorů v Dukovanech a Temelíně a k budování prvních z nich reálně přikročit.


Poznámka

Článek je druhý z cyklu, který bude rozebírat možnosti jednotlivých energetických zdrojů u nás, a jehož cílem je iniciovat diskuzi o budoucím rozvoji české elektroenergetiky a jeho úskalích i možnostech. Hlavně v souvislosti s tím, že od poslední aktualizace energetické koncepce uplynulo již pár let a v oblasti energetiky se u nás reálně nic moc neudělalo. Zároveň se objevuje řada rizik a tak je velmi důležité udělat si přehled o vývoji a stavu energetiky ve světě i u nás. První část věnovaná větrné energii je dostupná zde (díl 1.) a zde (díl 2.).

Článek byl původně publikován na webu OSEL.CZ

Komentáře

0 komentářů ke článku "undefined"

Přidat komentář

Vaše emailová adresa nebude zveřejněna. Vyžadované informace jsou označeny *