Co dělat právě nyní v české energetice? - díl první

DomůNázoryCo dělat právě nyní v české energetice? - díl první
Obsah tohoto článku nebyl zpracován ani upravován redakcí webu oEnergetice.cz a článek nemusí nezbytně vyjadřovat její názor.

Blíží se doba odstavení německých jaderných elektráren a uzavření řady uhelných bloků u našich sousedů. Zároveň jedná naše uhelná komise o doporučených termínech a podmínkách zavírání uhelných elektráren u nás. V Evropské unii sílí tlak na přechod k nízkoemisní energetice a rostou ceny emisních povolenek. V české energetice je tak už potřeba konečně začít budovat zdroje, které nahradí zdroje uhelné a stárnoucí zdroje jaderné a fotovoltaické.

Česká republika má státní energetickou koncepci, jejíž poslední aktualizace proběhla v roce 2015. Tam je nastolen plán, jak postupně nahradit dosluhující zdroje a realizovat přechod k nízkoemisní energetice. Její základní ideou je postupný přechod k nízkoemisnímu mixu založenému na kombinaci jaderných a obnovitelných zdrojů s postupně se snižujícím podílem fosilních zdrojů, u kterých bude hlavně důraz na omezení zdrojů uhelných.

Vývoj výroby elektřiny v České republice v posledních deseti letech (zdroj ERU).

Bohužel je však nutné konstatovat, že pět let, které od dané aktualizace uplynuly, se ve výstavbě nových zdrojů nerealizovalo téměř nic. Naopak se důraz v Evropské unii na snižování emisí oxidu uhličitého, a hlavně na uzavírání uhelných zdrojů, ještě více zvýraznil. Je tak pravděpodobné, že odstavování uhelných bloků bude ještě rychlejší, než se předpokládalo. Změní se i situace okolo nás, kdy se Německo hlavně v období, kdy není větrno a nesvítí, změní z exportéra elektřiny na importéra.

Navíc se konci své životnosti pomalu blíží bloky jaderné elektrárny Dukovany. Technicky by bylo možné je provozovat šedesát let, tedy zhruba do poloviny čtyřicátých let. Politicky je však patrně reálnější odstavování v polovině let třicátých. V té době už také bude končit i životnost současných fotovoltaických a větrných elektráren. Je tak třeba přistoupit k náhradě velké části současných zdrojů. Zároveň bude třeba je zastoupit i při síťových regulačních službách.

Podíl paliv a technologií na výrobě elektřiny v České republice. Stále dominuje uhlí, největším nízkoemisním zdrojem jsou jaderné elektrárny (zdroj ERU).

Nutnost náhrady regulační role uhelných zdrojů

Doposud mají dominantní roli při regulaci soustavy právě uhelné zdroje. Do značné míry byla na této možnosti postavena naše elektrická síť a její stabilita. Standardně jsou naše uhelné bloky osazeny turbínami s výkonem okolo 200 MW. I jaderné bloky v Dukovanech jsou osazeny každý dvěma turbínami zhruba o tomto výkonu. Uhelné bloky jsou poměrně flexibilní. Pro průběžnou regulaci však musí být v provozu, aby mohly rychle v případě potřeby zvýšit výkon. Ten pochopitelně mohou naopak v případě snížené spotřeby či zvýšené produkce z jiných zdrojů snížit.

Je jasné, že provoz na snížený výkon zhoršuje efektivitu a ekonomiku tohoto zdroje. Proto se objevuje tendence využít v případě omezené spotřeby u nás možnost exportu elektřiny z něj. Právě tento efekt využití uhelných zdrojů byl jedním z důvodů vysokého exportu elektřiny z Česka v minulém období.

Zatížení elektrické sítě v České republice v zimních měsících (přelom roku 2019 a 2020). Je vidět, že je třeba pokrýt i přes 10,5 GW výkonu. Naše síť by tak měla počítat s kapacitou nejméně 11 GW. (Zdroj oenergetice, Energostat).

Regulovat paroplynovými bloky?

Plynové zdroje mohou v regulaci uhelné nahradit, ovšem v tomto případě se nejedná o zdroje nízkoemisní. Plyn má sice oproti uhelným zdrojům emise skleníkových plynů podle kvality uhlí poloviční až třetinový. Pokud však započítáme emise při těžbě a dopravě, je rozdíl oproti uhlí daleko menší. Pokud tak bude tlak na snižování emisí větší a cena emisních povolenek poroste, stanou se tak plynové zdroje nežádoucí. V každém případě je jejich využití v elektroenergetice neslučitelné s cílem dosažení uhlíkové neutrality, které chce Evropská unie dosáhnout do roku 2050. Realizace větších paroplynových bloků je sice kratší, než je tomu u jaderných zdrojů, přesto však příprava konkrétního projektu a následná výstavba zabere pět i více let. Naopak, požadavky na rychlejší přechod k uhlíkové neutralitě může vést k tomu, že bude požadováno dřívější odstavení paroplynových bloků a ceny emisních povolenek nebo jiná ekonomická opatření nastavena v tomto směru.

Případný investor se tak může dostat do situace jako Vattenfall, který v roce 2015 spustil nejmodernější a velice nákladnou uhelnou elektrárnu Moorburg a nyní je v situaci, kdy se po pouhých pěti letech provozu hlásí do aukce na kompenzované rychlé odstavení této elektrárny. Tato elektrárna byla postavena pro to, aby zajistila zálohu větrným zdrojům na severu Německa a regulaci výkyvu v síti vlivem stále většího podílu fluktuujících obnovitelných zdrojů. Odstavované uhelné zdroje v Německu nahrazují znovu spuštěné i úplně nové zdroje plynové. Kdy se dostanou pod tlak na odstavení tyto, je otevřená otázka, ale jisté je, že to bude relativně brzo.

Že využití plynových zdrojů jako náhrady uhelných či dokonce jaderných není cestou za nízkoemisní energetikou ukazuje srovnání produkce skleníkových plynů v ekvivalentech CO2 během životního cyklu normovaná na jednotku vyrobené elektřiny. U fluktuujících zdrojů je třeba započítat i CO2 spojené s jejich zálohováním a regulací. Pokud k tomu použijeme fosilní zdroje a ne jaderné, tak může být jejich uhlíková stopa docela velká (viz šedá část nad nimi).

Zapojení nízkoemisních zdrojů do regulace

Další možností je zapojit do regulace nízkoemisní zdroje. Jaderné zdroje mohou v principu pracovat jako zmíněné velké paroplynové zdroje. Už současné bloky se dokáží na regulaci podílet a ty nové jsou už na takové možnosti přímo projektovány. Intenzivně využívá regulaci jaderných bloků Francie. V oblasti jejich regulace v řádu desítek až stovky MWe je situace podobná uhelným či paroplynových bloků. Jádro je v této oblasti podobně flexibilní. Horší je to při přechodu k nízkým výkonům či dokonce vypnutí a opětovné spuštění. Už nyní se jaderné bloky do zálohování a regulace zapojují a v budoucnu, kdy by měl jejich podíl na energetickém mixu růst, se bude jejich úloha v této oblasti zvyšovat.

Velmi efektivní podporu regulace mohou dát zdroje vodní. Jednou z možností je regulace průtoku vody z přehrad. Tam je však třeba připomenout, že možnosti jejího využití jsou silně závislé na momentálním stavu vodních zdrojů a také tím, že je třeba zajistit dostatečný průtok vody v řece pod přehradou a další vodohospodářské a ekologické funkce přehrady. Ještě efektivněji mohou k regulaci přispět přečerpávací elektrárny. Ty jsou jedním z nejlepších zařízení pro akumulaci energie. Bohužel jsou však možnosti vodních zdrojů u nás omezené geografickými podmínkami a z velké části už vyčerpané. V současné době se nejvíce mluví o možnostech nově napuštěných jezer vznikajících při rekultivaci krajiny po těžbě uhlí.

Existují sice místa vhodná pro vznik přečerpávacích elektráren, ale většinou je to v ekologicky velmi cenných horských partiích. Je možné využít i propojení některých existujících přehrad s nově vybudovanými k realizaci tohoto typu akumulačních zdrojů. Problémem je však značný odpor proti výstavbě jakékoliv vodní nádrže a obav z jejich environmentálních dopadů. Velmi náročné by tak bylo i získání potřebných povolení pro výstavbu těchto zdrojů. Časově si tak jejich případná realizace nijak nezadá s jadernými elektrárnami, které mají místa výstavby vybrána a proběhlo u nich i environmentální posouzení. Odpor proti stavbě přehrad je u nás v možných lokalitách daleko větší, než je tomu u jaderných reaktorů v lokalitě Temelína a Dukovan. Je tak otázka, zda a kdy by se podařilo nové hydroelektrárny realizovat.
V každém případě by bylo vhodné dané lokality z tohoto pohledu chránit a připravit potřebné studie jejich potenciální realizace a environmentálních dopadů. Vhodné by bylo, kdyby se vědělo, které konkrétní zdroje u nás doplňují. Realizace by pak byla případně možná při získání odpovídající podpory společnosti, nalezení přesného místa v našem energetickém mixu a navržení vhodného finančního modelu. V každém případě jsou však možnosti limitované. Je třeba korigovat některé představy o tom, jak velké kapacity lze v této oblasti realizovat. Možnosti oscilací výšky hladiny jsou v případě nádrže, která má i jiné funkce, než jsou energetické, a není vybudovaná čistě pro tyto účely, jako je tomu třeba u horní nádrže Dlouhých strání, velmi omezené.

akumulaci lze použít i baterie. Zatím však je jejich kapacita i cena na takové úrovni, že neumožňují ani vyrovnávání denního cyklu. Velice dobře se však uplatňují při rychlé regulaci, jak je vidět třeba i na příkladu známé a ve své době největší baterie, kterou pro Austrálii dodal Elon Musk. Ta má výkon 100 MW a kapacitu 124 MWh. Dokáže tak regulovat v řádu desítek MW výkyvy v řádu minut a hodin. Jejich parametry i cena se jistě budou zlepšovat. Zvláště v kooperaci s větrnými a fotovoltaickými zdroji se budou uplatňovat stále více. Bylo by velmi vhodné je do regulace zapojit i u nás.

Spotřeba elektřiny podle odvětví (zdroj ERU).

Je také jasné, že se do regulace a zálohování musí zapojit i zdroje větrné a fotovoltaické. U obou je pochopitelně poměrně jednoduché je v době velkého přebytku v případě nutnosti vypnout. Znamená to však, že v případě ideálních podmínek budeme část elektřiny ztrácet. Proto je důležité zvážit vhodné zapojení těchto zdrojů do energetického mixu a co nejvíce rozšířit jejich dobu produkce i na úkor hodnoty výkonu v píku. Toho dosáhneme třeba tím, když část panelů fotovoltaické elektrárny nenamíříme na jih, ale na východ a na západ a zvolíme i jiný úhel vhodný pro daný směr. Celá elektrárna tak bude mít sice nižší výkon v maximu, než by mít mohla, ale zato bude dodávat více během rána a v podvečer. Daleko vhodnější tak bude její usazení v denním diagramu.

Další možností je kombinace intermitentních zdrojů s jinými nebo nějakým zdrojem akumulace či spotřeby v době, kdy jsou přebytky. Může jít o soustavu fotovoltaiky s baterií nebo jiným druhem akumulace, případně bioplynovým nebo plynovým zdrojem. Inteligentně reagujícím zařízením využívajícím přebytky elektřinu může být dobře známé vytápění nebo třeba nabíjecí zařízení pro elektromobily. Pokud dokáže takový systém vystupovat jako funkční celek, který zaručuje stabilní poskytovaný výkon nebo regulační služby, bude daleko méně zatěžovat síť a může dokonce efektivně pomáhat právě při udržování stability soustavy. Další výhodou je, že takové sestavy mohou umožnit zachování udržitelnosti a krizové dodávky elektřiny v případě katastrof a úplného výpadku sítě. Právě takové systémy by finanční modely pro budování nových obnovitelných zdrojů měly dominantně podporovat.

Určitě by případné dotace měly být podmíněny kvalitou zařízení, jeho životností i schopností reagovat na potřeby regulace. Určitě bychom měly zabránit nákupu nekvalitních čistých panelů jen proto, že jsou laciné. To pak vede k tomu, že efektivita klesá rychleji a části zařízení brzy odejdou. Takové zkušenosti se získaly s některými fotovoltaickými elektrárnami, které se narychlo a co nejlevněji postavily v letech 2008 až 2009.

Velice důležitým úkolem je posilování flexibility soustavy efektivním využitím současných možností, kterou je třeba systém HDO, i zaváděním nových využívajících potenciál chytrých sítí. Propojení centralizovaných nástrojů regulace sítě a nově vytvářených decentrálních by mohlo pomocí při vytvoření nového efektivního, udržitelného a chytrého i robustního energetického systému.

Jeden ze scénářů výroby elektřiny v současné aktualizaci státní energetické koncepce z roku 2015. Jinak tato aktualizace, na jejímž rámci a uvedení jsem se mohl v rámci Druhé Pačesovy komise mohl účastnit, předpokládá pro jednotlivé zdroje širší rozmezí, které umožní využít technologické změny, ke kterým v budoucnu dojde (zdroj ASEK 2015).

Využití importu elektřiny

Pochopitelně lze v případě potřeby využít možnosti importu, pokud jsou u sousedů k dispozici volné kapacity. V takovém případě je nejlépe, když mají sousedé rozdílné energetické mixy a produkují přebytek energie v jiných povětrnostních podmínkách než my. U všech našich sousedů se předpokládá budování dalších a dalších větrných a fotovoltaických zdrojů a odstavování zdrojů fosilních. Hlavně v Německu už se instalovaný výkon větrných turbín blíží potřebnému výkonu, stejně je tomu i u fotovoltaických elektráren. A plány jsou tyto hodnoty znásobit. Už teď má Německo ve větrných a slunečných dnech přebytky, které potřebuje exportovat ke svým sousedům. Ty snižují cenu silové elektřiny na energetické burze v dané době dokonce až do záporných hodnot. Pro nás to může být na jedné straně výhoda. Můžeme totiž v té době kupovat lacinou elektřinu z Německa, kterou zaplatí německý spotřebitel v poplatcích za dotace zelených zdrojů. Znamená to však obrovský problém pro rozšíření hlavně větrných zdrojů, ale i těch fotovoltaických, u nás. Většinou je u nás stejné počasí jako v Německu. Naše větrné turbíny mohou těžko ekonomicky soupeřit s turbínami na pobřeží v severním Německu. I tak je však velmi důležité rozvíjet možnosti přenosu elektřiny mezi sousedními soustavami a využít vzájemně efektivitu propojení a vzájemně prospěšnou výpomoc a spolupráci. Bez rozdělení zálohování do větší sítě by například bloky 1000 MW byly pro naši soustavu příliš velké. Německu pak naopak vypomáháme s přenosem jeho elektřiny ze severu na jih. Je tak rozumné rozvíjet propustnost přeshraničních propojení.

Na druhé straně odstaví Německo své jaderné bloky do roku 2022 a s Německem i další sousedé plánují v nejbližší době odstavit všechny uhelné bloky. Chtějí také omezit emise oxidu uhličitého, což ovšem znamená, že těžko budou budovat plynové zdroje pro export do svého okolí. Německo i další naši sousedé tak plánují v době, kdy nefouká a nesvítí spoléhat na import elektřiny. Kdo ovšem zdroje pro nás a naše sousedy v té době zajistí však už nikdo neřeší. Jak takové neřešení může skončit, naznačují následující příklady.

Dánsko spoléhá hlavně na větrné turbíny na pevnině i na moři (zdroj Wiki Commons).

Varování v podobě současné situace v Dánsku a Kalifornii

Příkladem států, které jsou v čele budování obnovitelných zdrojů, zavírání uhelných a odmítání některých nízkoemisních (jaderných) jsou v Evropské unii Dánsko a v USA Kalifornie. Zároveň jsou názornou ukázkou, k jakým problémům taková energetická koncepce vede. Je však třeba nejdříve zdůraznit, že Dánsko má neskonale lepší podmínky než Česko pro budování větrných zdrojů. V Kalifornii jsou pak excelentní podmínky hlavně pro solární zdroje, ale velmi dobré jsou i pro zdroje větrné. Navíc má Kalifornie rozsáhlé pouštní oblasti s těmito podmínkami.

Dánsko má velmi výhodné podmínky pro využití větrných zdrojů. Je to poloostrov a ideální místo pro budování pobřežních nebo mořských větrných turbín. Postavilo jich tak velký počet. Jejich celkový výkon velmi významně přesahuje potřeby Dánska. Hlavní problém ovšem nastává s pokrytím spotřeby v době, kdy nefouká. Pro tuto dobu má Dánsko hlavně zdroje spalující plyn nebo biomasu, kterou dováží i ze zámoří. Instalované zdroje tohoto typu však nedokáží pokrýt potřeby Dánska. V Dánsku se tak střídají období, kdy potřebuje velmi vysoký výkon exportovat ke svým sousedům a jiná, kdy naopak potřebuje velké množství elektřiny od svých sousedů dovézt. I když má Dánsko ve větru instalováno velký celkový výkon, stejně nakonec zůstává čistým importérem elektřiny. Dánsko je tak velice silně závislé na svých sousedech. V roce 2016 byl při spotřebě 33,3 TWh celkový dánský import elektřiny 15 TWh (což je 45 % spotřeby), čistý import pak byl 5,0 TWh (což je 15 % potřeby). Pokud by všechny okolní státy přešly na podobný energetický mix, jako má nyní Dánsko, celý systém by přestal fungovat a elektrická síť by zkolabovala.

Stejně tak má sice Kalifornie velké přebytky v době, kdy intenzivně svítí slunce, ale spoléhá na import v době, kdy nesvítí a nefouká. To však funguje stále hůře, protože i okolní státy jsou stále více tlačeny ke stejnému energetickému mixu. Navíc je počasí, a tím i potenciál solárních a větrných zdrojů, podobný v celém regionu. Kalifornie se dominantně spoléhá na solární zdroje, má tak velmi vysoký podíl fotovoltaických zdrojů. To vytváří tzv. kachní křivku denního diagramu. Ta je způsobena tím, že během poledního maxima výšky slunce nad obzorem dostanete velmi vysokou produkci elektřiny. Ta může i překračovat potřeby. Naopak v podvečer, kdy slunce klesne k obzoru, přestanou solární zdroje dodávat a začnou až druhý den ráno. Zároveň je potřeba svítit a aktivity vedou k tomu, že spotřeba zůstává vysoká. V podvečer tak naopak musíme mít dostatečný rezervní výkon jiných zdrojů než solárních.

V Kalifornii s velmi teplým podnebím se intenzivně využívá klimatizace, která tak reprezentuje i velkou spotřebu. Její potřeba je pochopitelně silně závislá na záření slunce a největší v době jeho vysoké výšky nad obzorem. Solární elektrárny tak jsou při odpovídající velikosti jejich instalovaného výkonu velice užitečný prostředek k pokrytí denní špičky spotřeby. Pokles teplot však není tak rychlý, jako je pokles výšky slunce, a produkce elektřiny ze solárních elektráren. Navíc je účinnost fotovoltaických elektráren nepřímo úměrná teplotě. I to přispívá, spolu s nutností svítit a nárůstem aktivit k večeru, ke vzniku večerní špičky potřeby výkonu z jiných než solárních zdrojů a vytvoření krku labutě v grafu. S nedostatkem elektřiny se Kalifornie potýká už od začátku století, zatím však vždy vypomohly okolní státy. I ty však vlivem zelené ideologizace energetiky přecházejí k podobnému energetickému mixu. V samotné Kalifornii pak nepoměr mezi obdobím přebytku a nedostatku elektřiny stále narůstá. Letos v létě navíc nastalo extrémně horké letní období, kdy požadavky na klimatizaci velmi narostly. Ani okolní státy tak neměly v době, kdy nesvítilo a nefoukalo, přebytek zdrojů. Nebylo tak možné elektřinu do Kalifornie importovat. Místní energetické firmy tak musely omezovat dodávky a dokonce přistoupily ke střídavému postupnému odpojování různých oblastí a spotřebitelů.

Kalifornie již dlouho bojuje s tzv. kachní křivkou, kterou vytváří vysoký podíl fotovoltaických zdrojů. Jde o denní diagram potřeby výkonu, které musí dodat jiné zdroje než solární. Zajímavé je že první vyvrcholení problémů se již zpočátku kladlo zhruba na rok 2020, což se nakonec vyplnilo (zdroj CAIRO).

Článek bude pokračova druhým dílem…

Štítky: Názorseznam