Fotovoltaické, resp. solární elektrárny spadají do kategorie obnovitelných zdrojů energie. Využívají nevyčerpatelný zdroj energie – sluneční záření a při výrobě neprodukují žádné emise. Díky těmto vlastnostem se v současné době boje proti změně klimatu těší velké oblibě.

Jejich hlavní nevýhodou je, že vzhledem k cenám panelů a jejich životnosti nejsou i přes neustálý vývoj a snahu o jejich zdokonalení rentabilní. Tato skutečnost se obchází různými formami investičních bonusů nebo garantovanými výkupními cenami elektřiny. Nešťastným příkladem podpory fotovoltaických elektráren je České republika, kde vlivem špatně nastavené legislativy se současně neočekávanými událostmi nastal solární boom neboli neočekávaný rozmach fotovoltaických elektráren, který způsobil výrazný nárůst cen elektřiny pro koncové zákazníky.

Na druhou stranu příklad z Velké Británie nasvědčuje tomu, že náklady na výrobu ve fotovoltaických elektrárnách neustále klesají a možná již brzy nastane doba, kdy nebude potřeba žádné podpory.

Fotovoltaické elektrárny nachází své využití jak v malém měřítku – instalace na střechách rodinných domů, obchodů nebo továren pro vlastní spotřebu, tak i v měřítku energetických soustav.

Způsob využití sluneční energie

Sluneční elektrárny lze rozdělit na dva typy z pohledu využívání energie Slunce. Jedná se buď o méně rozšířené termální resp. koncentrační elektrárny a v dnešní době převážně využívané fotovoltaické elektrárny.

Termální elektrárny využívají slunečních kolektorů, které jsou schopny absorbovat sluneční energii a využít ji k ohřevu teplonosného média. Tento typ je vhodný především k ohřevu vody nebo vytápění. Koncentrační elektrárny za pomocí zrcadla nebo soustavy zrcadel, tvořících parabolu, soustředí sluneční záření do ohniskového absorbéru, tímto způsobem je možné dosáhnout výrazně vyšších teplot než u předchozího typu. Díky tomu je tuto energii možné využít k nepřímě přeměně slunečního záření na elektrickou energii.

Druhým typem elektráren, kterým se zabývá tento článek, jsou tzv. fotovoltaické elektrárny, které využívají fotovoltaického jevu k přímě přeměně světelné energie na energii elektrickou.

Princip funkce fotovoltaické elektrárny

Jak bylo zmíněno výše, fotovoltaické elektrárny využívají k přeměně slunečního záření na elektřinu fotovoltaický jev.Fotovoltaický panel se skládá z jednotlivých fotovoltaických článků, jejichž základem je polovodičová dioda. Ta obsahuje dvě vrstvy příměsových polovodičů – polovodiče typu P – anoda a polovodiče typu N – katoda.

Vrstva typu N obsahuje přebytek elektronů, ve vrstvě P je jich naopak nedostatek resp. vrstva obsahuje přebytek kladně nabitých „děr.“ Rozhraní těchto polovodičů se nazývá P-N přechod, který ideálně propouští proud pouze jedním směrem. Díky potenciálové bariéře zabraňuje volnému přechodu elektronů v závěrném směru, tedy z vrstvy N s jejich přebytkem do vrstvy P s nedostatkem elektronů. Není tedy možné, aby došlo ke spojení elektronů s dírami neboli k jejich rekombinaci. Umožňuje ovšem přechod elektronů v opačném – propustném směru.

Dopadem fotonů slunečního záření na fotočlánek vzniká vnitřní fotoelektrický jev, při němž jsou z krystalové mřížky obou vrstev uvolňovány elektrony, které se díky výše zmíněné vlastnosti hromadí ve vrstvě N a mezi oběma vrstvami vzniká elektrické napětí o hodnotě 0,5-0,6 V. Navýšení na požadované napětí se získá sériovým zapojením jednotlivých článků, paralelním kombinací lze dosáhnout vyššího proudu. V praxi se pro dosažení požadovaných hodnot využívá sério-paralelního zapojení.

Fotovoltaický článek. Zdroj: cez.cz
Fotovoltaický článek. Zdroj: cez.cz

Aby mohl být elektron z krystalové mřížky uvolněn, musí mít dopadající foton minimální energii potřebnou pro překonání zakázaného pásu, u křemíku je tato hranice 1,12 eV. Energie fotonů závisí na vlnové délce záření, energii 1,12 eV odpovídá infračervenému záření o vlnové délce zhruba 1 105 nm. Záření o kratší vlnové délce mají dostatek energie, dopadající fotony způsobí vznik elektronu a „díry,“ zbylá energie se přemění na nežádoucí teplo. Naopak fotony záření s větší vlnovou délkou křemíkem prochází a nejsou v něm absorbovány. Teoreticky lze využít energie maximálně 50 % dopadajícího světelného záření, prakticky se ovšem dosahuje hodnot polovičních.

Spektrum slunečního záření po průchodu atmosférou. Zdroj: fzu.cz
Spektrum slunečního záření po průchodu atmosférou. Zdroj: fzu.cz

Materiál fotovoltaických článků

Nejvíce využívaným materiálem pro výrobu fotovoltaických článků je v současné době křemík. V elektrotechnice má tento prvek rozsáhlé využití, díky čemuž má rozsáhlou technologickou základnu. V přírodě se nachází v čistotě 97-99 %, což není pro využité v elektrotechnice dostatečné. Čistší křemík je nutné vyrobit. V případě fotovoltaických článků se využívá jak polykrystalický, tak i monokrystalický křemík.

Polykrystalický křemík se vyrábí za pomocí chemických metod – např. Siemensovy metody. Oproti monokrystalickému křemíku je výroba méně nákladná a články dosahují vyšší účinnosti při nižší intenzitě záření, účinnost těchto článků se pohybuje okolo 15-17 %.

Monokrystalický křemík se vyrábí za pomocí řízené krystalizace z taveniny tzv. Czochralského metodou. Výhodou monokrystalického křemíku oproti polykrystalickému je vyšší účinnost při vyšších intenzitách záření, nejvyšší účinnost tohoto typu článků přesahuje 20 %.

Druhým nejvyužívanějším materiálem je arsenid galia. Výhodou je vyšší účinnost než u křemíkových článků, prozatím nejvyšší účinnost tohoto typu článku se pohybuje okolo 29 %. Nevýhodou je vyšší cena, větší hustota a křehkost článků. Díky vyšší účinnosti a odolnosti proti kosmickému záření se tyto články využívají především ve vesmírných družicích.

Nejvyšší dosažené laboratorní účinnosti fotovoltaických článků. Zdroj: National Renewable Energy Laboratory (NREL)
Nejvyšší dosažené laboratorní účinnosti fotovoltaických článků. Zdroj: National Renewable Energy Laboratory (NREL)

Konstrukce fotovoltaických článků

Při konstrukci fotovoltaických článku je prioritou úspora materiálu a omezení optických a elektrických ztrát. Optické ztráty jsou způsobeny především odrazem záření, které u křemíku přesahuje hodnotu 30 %. K eliminaci tohoto jevu se využívají speciální antireflexní vrstvy, které jsou schopny odrazivost snížit až pod 10 %. Další možností je vytvoření texturovaného povrchu článku za pomocí selektivního leptadla.

Součásti fotovoltaické elektrárny

  • Fotovoltaické panely
  • Regulátor resp. MTTP měnič
  • Střídač
  • Propojovací vodiče
  • Ochranné prvky
  • Elektrocentrála – záložní zdroj a baterie (ostrovní provoz)
  • Transformátor (připojení do přenosové soustavy)

Fotovoltaické panely

Fotovoltaické články jsou sério-paralelně zapojeny a jako celek tvoří panel. Fotovoltaická elektrárna je poté tvořena sério-paralelní kombinací panelů. Výkon panelů je udáván v jednotkách Watt peak (Wp). Jedná se o maximální (peak) hodnotu výkonu za ideálních podmínek – nestíněné světelné záření směřující kolmo na panel, ideální teplota, panel bez nečistot. Při polojasnu klesá výkon přibližně na 35 %, při zatažené obloze na 10 % udávaného maximálního výkonu. Běžné nominální napětí panelů je 12, nebo 24 V, méně často 48 V.

Panely jsou běžně vybaveny ochranným hliníkovým nebo duralovým rámem a kryty speciálním tvrzeným sklem, které panel chrání před povětrnostními podmínkami. Mezi samotnými články a tvrzeným sklem se dále nachází další vrstva, která chrání články před mechanickým poškozením, může se jednat například světlopropustný gel Ethylen-vinyl acetát (EVA). Ze zadní strany jsou panely chráněny dalším materiálem, například laminátovou deskou. Životnost panelů je u většiny výrobců udávána na 25 let se zárukou, že účinnost po 10 letech neklesne pod 90 % a po 25 letech pod 80 %.

Regulátor resp. MTTP měnič

Jelikož s kolísající výrobou fotovoltaických elektráren kolísá i napětí na výstupu je nutné toto napětí regulovat. K tomu slouží solární regulátor. Klasické regulátory mají účinnost okolo 80 %. Další možností je využití moderních typů regulátorů s vestavěným DC/DC měničem označované jako MTTP měniče. Jejich účinnost se pohybuje mezi 95-98 %. Ve srovnání s klasickými regulátory jsou ovšem několiknásobně dražší.

Střídač

Měnič napětí neboli střídač slouží k přeměně stejnosměrného napětí na střídavé.

Ochranné prvky

Především u větších systému se využívají jističe, které sloužící jako ochrana proti zkratu, a napěťové svodiče pro ochranu elektrárny před přepětím – např. úder blesku.

Výhody a nevýhody fotovoltaických elektráren

Výhody a nevýhody fotovoltaických elektráren (ČR)

Fotovoltaické elektrárny v ČR

V České republice bylo podle Energetického regulačního úřadu k 30. září 2016 v provozu 28 341 solárních elektráren s celkovým instalovaným výkonem 2 127,1 MW. Téměř polovina uvedeného instalovaného výkonu je tvořena zdroji s instalovaným výkonem od 1 do 5 MW. České fotovoltaické elektrárny vyrobily v roce 2015 2,26 TWh elektřiny, což představovalo zhruba 2,7 % celkové brutto výroby elektřiny v České republice.

V následující tabulce je uveden seznam 10 největších fotovoltaických elektráren v České republice. Tou vůbec největší je FVE Ralsko, která zahrnuje skupinu fotovoltaických elektráren v lokalitách Ralsko a Mimoň. Soubor pěti elektráren vzdálených od sebe jednotky kilometrů zahrnuje FVE s instalovanými výkony 17,49 MW, 14,27 MW, 12,87 MW, 6,61 MW a 4,52 MW, celkový instalovaný výkon FVE Ralsko tedy činí 55,76 MW. FVE Ralsko byla uvedena do provozu v roce 2010 a jejím provozovatelem je společnost ČEZ Obnovitelné zdroje, s.r.o.

Název provozovnyInstalovaný výkon (MW)ObecKrajDržitel licence
FVE Ralsko55,76RalskoLibereckýČEZ Obnovitelné zdroje, s.r.o.
FVE CZECH VEPŘEK35,10Nová VesStředočeskýFVE CZECH NOVUM s.r.o.
FVE Ševětín29,90ŠevětínJihočeskýČEZ Obnovitelné zdroje, s.r.o.
FVE Vranovská Ves16,03Vranovská VesJihomoravskýČEZ Obnovitelné zdroje, s.r.o.
Solar Stříbro s.r.o.13,61StříbroPlzeňskýSolar Stříbro s.r.o.
FVE ŽV - SUN, s.r.o.12,98ChomutovÚsteckýŽV - SUN, s.r.o.
Fotovoltaická elektrárna Uherský Brod10,21Uherský BrodZlínskýDivalia a.s.
FVE Klenovka8,43PřeloučPardubickýFVE Klenovka s.r.o.
FVE Brno - Letiště Tuřany8,12BrnoJihomoravskýBS Park I. s.r.o.
FVE Oslavany7,99OslavanyJihomoravskýREN Power CZ a.s.

Úvodní fotografie: Citizenmj

Komentáře

0 komentářů ke článku "undefined"

Přidat komentář

Vaše emailová adresa nebude zveřejněna. Vyžadované informace jsou označeny *